BUILT 2 BALL
BASKETBALL PERFORMANCE PROGRAM

Chris Barnard
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRO</td>
<td>3</td>
</tr>
<tr>
<td>POSITION NEEDS ANALYSIS</td>
<td>5</td>
</tr>
<tr>
<td>KEY FACTORS IN PHYSICAL DEVELOPMENT OF BASKETBALL ATHLETES</td>
<td>6</td>
</tr>
<tr>
<td>TRAINING THE KEY FACTORS</td>
<td>13</td>
</tr>
<tr>
<td>PERIODIZATION FOR TRAINING BASKETBALL</td>
<td>19</td>
</tr>
<tr>
<td>PRINCIPLES OF THE PROGRAM</td>
<td>21</td>
</tr>
</tbody>
</table>
INTRODUCTION

Welcome to Built to Ball: Basketball Performance Program. My goal for this program was to create an all encompassing performance system for basketball athletes.

A few years ago, I set a goal for myself to really dive into training for power and performance. To ground this goal, I set my eyes on a 42 inch standing vertical jump. I figured this was an “elite” athletic feat, and if I could develop and try new methods to obtain this I would be well versed in coaching it as well.

Through 2 years of diving deep into various methods, training, and research I was able to hit not just a 42 inch standing vertical, but a 44 inch standing vertical jump. On the way, I developed the best selling program “The Flight System”, which has sold thousands of copies since.

My intention for The Flight System was to simply teach all athletes how to develop vertical force, knowing that it would translate to many other athletic attributes including speed, explosiveness, and overall athleticism.

I immediately noticed a huge influx of basketball athletes flooding in to grab a copy of The Flight System and work their way towards a bigger vertical.

Now, I loved this and was grateful for their support. However, The Flight System predominantly focused on vertical force production. A basketball player needs many other physical attributes, in addition to vertical force production, in order to excel in their sport.

Soon, I found myself answering countless emails explaining that these basketball athletes still needed to perform speed and agility work specific to their sport.

I knew as a coach I needed to develop an all-encompassing system for basketball with the goal to elevate all aspects of their game, not just their jumping ability.

Over the next few years, I worked with high school and collegiate basketball players to help them develop the physical side of their game. These were great experiences, and I knew I was onto something good when athletes went from barely touching the rim to throwing down in games.

But, there was a part of me that felt like these gains were simply due to the physical maturation of the younger athletes. It was hard for me to take credit for their progress because sometimes, just getting a basketball player who’s never lifted before to trap bar deadlift can result in huge athletic gains.
One day, I received a call from an NBA player’s skills coach. He told me he wanted to spend the off-season in my area, and was looking for some performance training to compliment their off-season routine.

We met and he explained how the organization wanted to see big physical changes in his client.

Now, when you’re dealing with professional sports, you have to understand the business side of things. I have to work closely with each of my athlete’s organizations, build rapport, and figure out what each athlete’s needs are each off-season from the organization’s perspective.

While I do this individually with the athlete, it’s always valuable to understand how the organization sees their top players. It acts as a compass for me when I’m designing their off-season program.

After gathering all the intel I needed, I sat down and realized this prized NBA player needed to take a huge step physically to really get an edge in his game.

This was perfect, because it wasn’t just one aspect of his game that needed work. I was tasked with elevating every key component to his physical game; speed, agility, power, and strength.

The training that transpired that off-season was nothing short of extraordinary. We grinded week in and week out, and finished the off-season with an incredible physical transformation. This player shattered his personal bests in every physical attribute we developed.

Better than that, it literally paid off.

When he reported to camp, the organization was so pleased with his physical transformation that they picked up his 4th year option. In layman’s terms, he was a 1st round pick who was signed for three years. They signed him for another, which gave him a much bigger payday, basically more than enough to set someone up for life.

When I received that news via text, I was filled with excitement. It’s easily one of the highlights of my coaching career. Helping a guy earn millions with three months of hard work was a unique experience. It is changing lives, the very thing I set out to do when I decided to become a coach.

Since then, I got to work putting together this program to share with you. I wanted to make something that compiled all my work over the past decade to help create more basketball stories like the one I shared with you.

Let’s get to work.
POSITIONAL NEEDS

To understand your goals of the program, we need to analyze the needs of each position of the sport. This means we’re determining which movements basketball athletes perform in their sport, then we’re isolating those movements to train and elevate their game.

Below, I’m going to break down the three positional groups in basketball based off data of shared movement and share what they perform in-game:

1 - **POINT GUARD** - Point guards are the general of the floor and set the pace for their team. They usually require the highest amount of cardiovascular and muscular endurance. They also require quick acceleration and deceleration with rapid change of direction in multiple planes. A good point guard also needs balance and coordination to achieve center of mass control to create positional advantages on the floor.

2 - **SHOOTING GUARDS AND SMALL FORWARDS** - In comparison to point guards, shooting guards and small forwards typically sprint the longest amounts throughout the game. They require more acceleration and speed training, as well as change of direction when sprinting for fast breaks or outlets. They also require dynamic stability to create positional advantages.

3 - **POWER FORWARDS AND CENTERS** - These positions spend the most time in contact with other players. They typically are the strongest on the team and remain near the hoop. This calls for high levels of dynamic and static strength. Although they perform the least amount of movement in comparison to other positions they still require change of direction and explosiveness.

Above is a breakdown of the traditional positions in basketball based off the movements they perform in game. However, more and more we’re seeing a “positionless” game. One where big men are popping out to shoot, point guards are posterizing big men, and everyone needs a post-up game. All across the game, the lines of which position is which are blurred.

This means to play at a high level now, you need to be well versed in every physical category. If you’re 6’8” in high school, and a little chubby and slow, you can dominate off pure size and strength in high school. But, this won’t work at higher levels, where a 6’8” guy needs handles, and the ability to shoot and move around on the court.

Put simply, whatever your current position or strengths are, you need the ability to compete physically in every position if you want to excel in the game of basketball.

Knowing this, there are a series of key factors that I focus on with basketball athletes that will translate to the game no matter their position. Let’s get into them.
Key Factor #1: STRENGTH

A basketball athlete’s ability to express strength statically and dynamically is a huge factor in their success on the court.

If you look at a player like LeBron James, he can bang in the post with guys his size or bigger, which reflects his static strength. He can also finish after making contact, make passes on the dot even in bad position, and elevate for a violent dunk. This all reflects his ability to express strength dynamically.

To become a better hooper, you must be able to produce high amounts of force (or express your strength) in three different scenarios.

The first scenario you need to express your strength in is when you are in a static position. For example, when you are in the post either defending or feeling out a defender. Your ability to “stand your ground” is determined by your static strength.

If this foundational ability to express strength in a static position is not properly developed the basketball athlete will not only get bodied in the post, but will also struggle when he attempts to change directions at high speeds, transition from defense to offense (or vice versa), approach the basket for a dunk, or defend another player.

The next scenario is expressing strength dynamically. This is your ability to produce force while your body is moving at high velocities. As you may have guessed, in the game of basketball, this is a point of emphasis while sprinting as well as changing directions. In addition, you need to express strength dynamically when approaching the hoop for a dunk, or running down an opponent for a block.

This ability is especially important because as the speed of contraction increases, the body’s ability to produce force significantly decreases. For example, the reason a guy can squat 500 pounds, but can’t touch rim is because the speed of contraction is different. To dunk, you need a quick muscle contraction.

That last fact signifies the importance of two things:

1 - It signifies the importance of getting our bodies in the most beneficial positions to produce the highest amount of force possible. This comes down to having sound mechanics when changing direction, jumping and sprinting.

2 - It displays the importance of strength training for those who want to become more agile, jump higher, and sprint faster. However, regular old strength training won’t just do the trick. We’ll have to utilize a combination of advanced methods if we want to elicit strength adaptations that help our sport specific strength.
The last strength scenario is elastic. This is our ability to produce spring-like force in certain situations. You can see this in a point guard who can stop on a dime and quickly explode in the opposite direction.

Currently, it’s believed that a lot of one’s elastic force potential is purely based on genetics, but in my experience dynamic lifting and plyometrics can develop one’s elastic force production.

Absolute Strength

In addition to the three strength scenarios, you should know about the two types of strength.

The first is your absolute strength.

This is your raw ability to produce force. Think of it in terms of a one-rep max.

Many basketball athletes lack a general foundation of absolute strength, and it results in a lack of movement efficiency, awkward movement patterns, and muscle imbalances that pull from performance.

A foundation of absolute strength sets the stage for a basketball athlete to move better, stay healthier, and be overall stronger. In addition, absolute strength is a precursor to power, which is important to hoopers for reasons I’ll address below.

In this program, we’ll develop absolute strength with a series of advanced modalities. These modalities will not only make you stronger, but will also translate into power, explosiveness, and more.
Relative Strength

The other type of strength is relative strength.

Relative strength is the amount of force you can produce relative to your bodyweight.

As an example, if you weigh 200 pounds and can squat 315 pounds, and your buddy weighs 200 pounds, but can only squat 225, you have more relative strength.

Relative strength is massively important for all athletes, especially basketball players. The higher our relative strength is, the more control we have over our bodies. This means we’re better able to change direction, traverse the court, explode off the ground to grab a rebound, throw down dunks, and more.

The converse of a guy with high relative strength is an overweight powerlifter who can lift heavy, but is slow, sluggish, and unbalanced.

In this program, we’ll use various advanced methods to improve your relative strength, thus improving your body control, balance, movement efficiency, and more.

Key Factor #2: POWER

Power is what you should be after as a basketball player. Power is your ability to produce force quickly. And it determines your ability to change directions rapidly, sprint down the court for a fast break, dunk, and more.

In this program, we’ll be building your power in three planes, which we’ll discuss below.

Vertical Power

Basketball is a vertical game.

As such, you need vertical power to be successful. Previously, you only needed hops if you were a slashing small forward, or a big man. Now, all positions require high levels of vertical power.

Vertical power determines your ability to grab boards, block shots, and of course, dunk.

Again, it doesn’t matter what your position is, all positions on the floor are expected to get up vertically. Plus, you don’t want to be that guy who’s on a fast break, and can’t finish with a dunk, right?
Horizontal Power

Horizontal power is an often overlooked aspect of training by basketball players. However, if you want an explosive first step and faster movement on the court, you’ll need horizontal power.

Horizontal power is critical for your ability to accelerate. And in a game where you’re constantly changing speeds and transitioning from offense to defense, the faster you accelerate, the more of an edge you’ll have on the court.

Additionally, horizontal power will help you blow by a defender out of your triple threat stance.

Again, horizontal power is often overlooked, but if you add this tool to your toolkit, you’ll get a huge competitive edge.

Lateral Power

Cutting, dropping defenders with hard crossovers, and putting the clamps on an opponent - all of that is determined by your lateral power.

Lateral power is often misunderstood, and many basketball players don’t go about developing it the right way. It’s far simpler than most imagine but countless hours of laterally shuffling isn’t the most efficient way of developing it.

Building a foundation and building off the foundation with more advanced movement in the lateral plane will allow an athlete to begin moving proficiently.
Key Factor #3: LINEAR SPEED

Speed is another important factor for basketball athletes. The faster you can get up and down the court, the more of an advantage you have. However, the speed required for basketball athletes is unique.

There’s a lot of start and stop in basketball, transitioning from defense to offense and vice versa, and going from a dead stop to a quick cut toward the basket.

All this said, to arm you with adequate speed tools, we will focus our efforts on acceleration and deceleration quickly.

Acceleration

Acceleration is your ability to build speed quickly. Rarely, if ever, will an athlete reach top speed on the basketball court. However, they will accelerate frequently.

Your ability to accelerate relies on two things. The first is horizontal power, which I spoke about above.

The second is mechanics.

In general, you want a forward body angle to produce as much force horizontally as possible. However, the mechanics for basketball players will vary due to the unique nature of their sport, especially compared to football and baseball, where an athlete is running in a straight line for extended periods.

In this program, we’ll use unique drills designed for the basketball athlete’s unique needs.

Deceleration

Deceleration is your ability to slow down or come to a dead stop. I said above that basketball players accelerate frequently. They’ll also decelerate just as frequently. And the more efficient an athlete’s deceleration is, the better they’ll be able to get open, break defender’s ankles, and score in general.

A lot of deceleration comes down to your ability to absorb force eccentrically. If an athlete has poor deceleration it will show in their game. They’ll have slow cuts, they’re easily locked up by defenders, and it could even show up in their ball handling. If an athlete has good deceleration you will notice them being able to stop on a dime and make a play.

The other side of deceleration is mechanics. Just as there are efficient acceleration mechanics, there are also efficient deceleration mechanics to properly position the body.

We’ll use a variety of plyometrics and drills inside of this program to teach you how to effectively decelerate.
Key Factor #4: CHANGE OF DIRECTION

Linear Change of Direction (Curvilinear)

When we examine how a basketball athlete sprints throughout a game, we can see that they rarely sprint in straight lines and angles. In fact they follow more of a curvilinear path.

For instance, think about a guard running around a pick down the baseline to curl and plant for a shot. He doesn’t sprint, pivot 90 degrees, and take a hard angle. He rounds the run creating more of a curve or arc.

This is considered curvilinear or arc running. This is sport specific speed development for basketball and is an actual skill that can be trained.

When an athlete performs a curvilinear run they lean inwards anywhere between 5 to 30 degrees. This takes them off of their center of gravity as they are influenced by centrifugal forces. In order to sprint while leaning inwards an athlete must express a great deal of mediolateral ground contact.

When we run in a straight line both, legs have the same responsibility. But, when we bend that line into a curve, each leg takes on their own responsibilities. The inside leg utilizes more eversion of the foot and adduction of the hip and serves as a stabilizer. The outside leg utilizes more inversion of the foot and hip abduction to produce the power.

The athlete who can maintain sound mechanics and rhythm while running a curve will be the faster athlete. If the athlete disrupts their mechanics through arm action, trunk instability, or poor hip and ankle stability they will produce poor curvilinear speed.

This is why we must train curvilinear sprints when addressing basketball specific sprinting.

Lateral Change of Direction

Another important piece of your movement on the court is your lateral change of direction and agility. This is important for making quick cuts to the basket, locking down opposing players, and even handling the ball.
Just like linear speed there are a series of base mechanics for coaches and athletes to consider when training Change of Direction movements.

1 - **DECELERATION** - During this phase of the movement the athlete needs to come to a stop to change his direction. Initial deceleration is required to begin slowing the body down. Next, technique is involved to ensure the proper foot is planted and positioned at the proper angle. Finally the athlete must display eccentric strength out of the planted foot to fully decelerate their body.

2 - **TRANSITION** - This phase deals with the athletes time between deceleration and acceleration. This component is based on the amortization phase between the eccentric and concentric contraction of the movement. Here we want to minimize ground contact time utilizing the elastic strength we develop in our program.

3 - **ACCELERATION** - This is the final phase of a change of direction movement where we are redirecting our forces to move in the desired direction. Accelerating out of the movement deals with the concentric contraction of the muscles to rapidly drive the body in the desired direction. Technique is also involved to put the athlete in the most mechanically advantageous positions.

It’s important we train these factors independently and integrate them back as a whole. When these components are enhanced we can then enhance the technique to change directions in multiple planes.

Finally once change of direction technique is enhanced we can then add reactionary components so the athlete is responding to a stimulus. This is what is considered true Agility or Sport-Specific Speed training.
TRAINING THE KEY FACTORS

Now that you understand what we’re trying to accomplish in this program, the next piece is understanding how we are going to achieve this and get your results.

As the saying goes, there are many ways to skin a cat. The same is true for training athletes. In fact, each athlete is unique and may need to be trained differently to get the desired outcome.

I have met many coaches who have different opinions, experiences, and coaching techniques than myself, and still produce optimal athletes.

But, my goal for the Built to Ball is to trim the fat, and focus on training principles that consistently deliver results.

When I focus on training these modalities it has shown me improvement time and time again with athletes of all different ages and levels.

Below, I want to touch on the modalities you’ll be using in this system and the reason behind the use of them.

Speed Training

Speed Training, is the direct speed work you will be performing within Built to Ball. We will place an emphasis on your ability to accelerate and decelerate efficiently so you can move better on the court.

When it comes to speed training I like to take the “isolate and elevate” approach.

If you’ve watched any of my YouTube videos, you may be familiar with this term. Essentially, it means that I want to hone in on a single component of a larger movement, train that component, and elevate it to enhance that movement.

In our case, we’re doing it with acceleration mechanics. Instead of having an athlete sprint, and yelling cues at them, hoping they’ll “change course” mid sprint, I let carefully selected drills do a lot of the work.

This, again, means we create better mechanics by singling out
particular motor patterns, repeating them over and over until they’re significantly improved, and transferring them back into a sprint.

Remember, sprinting is a skill, and skills can be taught and developed. It’s in the same realm as shooting a basketball. We want to break it down into simple drills to get better.

Power Training

Power is the key to transition your strength into speed and jumping ability. As the program moves along, we need to focus on moving the athlete throughout the Speed-Strength Continuum in order to transfer absolute strength into relative strength so the athlete can produce more force from each step on the court.

One big player in building relative force is plyometrics. Plyometrics enhance the elastic strength we discussed prior and are the key to teaching the athlete how to absorb and produce force dynamically.

Because when you’re on the court, you’ll be producing force in a variety of different scenarios. Sometimes at high velocities and sometimes at low velocities. To excel on the court, you’ll need to effectively display power in all scenarios.

When you nail this down, you’ll see a higher vertical jump, more quickness, and more overall explosiveness.

To do this first, we place an emphasis on low level plyometrics to build a solid foundation.

Next, we progress to teaching the athlete to properly absorb force eccentrically.

Once this ability is established, we place an emphasis on the transition, or isometric phase of dynamic movement, which not only creates more stability, but also generates faster ground contact times.

Finally, we can focus on maximum force production and how fast we can produce that force in the final phase of jump training.

Strength Training

As stated prior, the focal point of this program is to build the body’s overall absolute strength and transition it to relative strength.

To achieve this, we’ll use a four day split, where two days consist of upper body training, and two days consist of lower body training.
Of these two days, one day will focus on building absolute strength, while the other will emphasize relative strength by utilizing tempos and various loads with our compound lifts.

Absolute Strength

I’ve focused predominantly on the trap bar deadlift as the core lower body lift to build absolute strength in the lower body. Through my years of coaching, I’ve gravitated towards this movement more and more and as much as I love movement variation for building strength, I use the trap bar as a staple.

Here’s why:

Multiple studies have found that peak power and peak velocity are greater with trap bar deadlift than conventional deadlift. In many cases, these two measurements are higher in trap bar deadlift than back squat as well.

In sports, you rely on power and velocity to succeed, so it makes sense to double down on a movement in which the athlete can move the bar quickly and explosively with the intent of a better transfer to the court.

Even more, the trap bar deadlift places slightly more emphasis on knee extension than the conventional deadlift, and less stress on the lower back. This makes it a safer movement for athletes, easier to teach, and makes it more sport-specific.

My general goal is to get my athletes lifting 2.2 to 2.6 times their body weight on the trap bar. This is because I have found this range to be an indicator of sufficient absolute strength. Once an athlete has their absolute strength in this range, I know I can shift my focus to developing the athlete’s strength-speed and speed-strength.

It’s important to note that these benchmarks are all relative to the athlete’s height and weight. It would be tougher for my 6 foot 10, 250 pound basketball player to lift 650 lbs (2.6 times their bodyweight) than it would be for my 6 foot tall, 250 pound
linebacker to lift 650.

This isn’t to say we stop at 2.6, either. It’s more of a box to be checked, among a list of other benchmarks, that allow me as the coach to strategize and program in a way that helps the athlete develop more speed and power.

We’ll build strength in this movement, and others, by using simple progressive overload. Each week, we’ll decrease the volume (amount of repetitions) while increasing the intensity or load (amount of weight lifted).

Every 4th week, we’ll deload, and then repeat. Training in this fashion allows us to stay fresh and continually experience strength gains.

Relative Strength

There are a variety of methods we’ll use to build relative strength, but the method we’ll use in the weight room to develop this kind of strength is coined Triphasic Training.

I was first introduced to this type of training during my pursuit of a 44 inch vertical jump.

I read *Triphasic Training* by Cal Dietz, that focused on isolating and elevating each phase of a dynamic movement: eccentric, isometric, and concentric.

To exemplify each phase of a dynamic movement, we’ll use a back squat.

The lowering portion of the back squat is known as the eccentric phase. During the eccentric phase, you’re putting your muscles on stretch, and absorbing force as you descend lower into the squat. One of the mechanisms responsible for taking the muscles from a stretched position to a contracted position is the stretch-shortening cycle.

When you work this mechanism, you increase the speed and power with which you can contract the muscles.

In addition, we’re going to work the Stretch Reflex by manipulating the Golgi tendon organs.

The Golgi tendon organs are components of muscle that signals the brain to relax when a muscle contracts too hard. This mechanism is known as GTO Inhibition.

This mechanism is beneficial, as it prevents muscle damage. However, the mechanism is overactive, as the GTO signals the brain to relax when a contraction reaches 60% of the maximum force a muscle can handle.
With calculated eccentrics, we can place stress on the GTO and bypass this mechanism.

To sum this up, we’re trying to increase the total amount of force an athlete can absorb, effectively increasing the amount of force the athlete can produce.

Next, we’ll work the isometric phase. The isometric phase is the transition at the bottom portion of the squat.

During the isometric phase, you’re producing force in a static position. Producing force in this way calls upon motor units to maintain that position and not fold over from the weight. But, when you hold static positions for an extended period, the initial motor units fatigue, and larger, fast-twitch motor units are recruited as reinforcement.

This ultimately teaches the body to recruit larger motor units when performing dynamic movements. It will also increase the amount of force you can absorb, and have a resulting increase in the rate of force development.

Finally, we’ll work the concentric phase.

The concentric phase occurs during the ascension of the squat.

During this phase, we’re working on increasing the speed at which you can generate maximum force.

To do this, we’ll use concentric focused lifts in which we’ll move lighter loads as fast as possible. By doing this we’re working rate of force development, which is how fast you can produce force.

On top of this, we’ll use contrast training in conjunction with the concentric focused lifts.

Contrast training is essentially performing a heavy, resisted movement, such as a squat, or trap bar deadlift, then following it with an explosive movement like a sprint, a jump, or a bound.

The idea here is that the concentric-focused, loaded movement heightens the nervous system of the athlete. This is called potentiation. After the lift, we experience post-activation potentiation. This is the enhanced ability of a muscle to generate force with lighter loads after performing an exercise that consists of heavier loads.

Post-activation potentiation allows for greater force production, and power output of the lightly loaded exercise. In our case, the “lighter load” will be an explosive, plyometric movement.

Working each phase in isolation allows us to work particular mechanisms in the body independently. By training in this way, the physical adaptations we receive from emphasizing each phase will build upon each other in a way that allows us to build more relative strength and increase force output.
Auxiliaries

To supplement the compound lifts we use to build strength, we’ll use accessory movements to maintain balance in the body and further build strength.

I think a key difference in my coaching is that I teach my athletes to approach every rep with focus and intent.

Most without coaching go hard on the sprinting, jumping, and compound lifts, then the minute they get to auxiliaries they tend to “go through the motions”.

While there are some movements where this is merited, the majority of the time, I stress the importance of accessories, as they are tools to get stronger on compound lifts. I push them to keep the same intensity on reverse lunge reps as you do with your deadlift.
In this section, I’m going to lay out the Periodization you’ll be following in this program.

If you don’t know, periodization is intricate planning intended to overload the body with various training cycles and apply stimulus to transfer your training to increased performance in-game.

In Built to Ball, we’ll follow a block periodization, which we’ll break down into three main macrocycles; Accumulation, Transmutation, and Realization, which we’ll dig deeper into in the following sections.

Block Training

Block training is, at its core, concentrating on acquiring one desired quality, then building upon that adaptation while introducing a new stimulus to improve a new quality.

This is my system of choice when training athletes because it allows the specific adaptations to be acquired with as little volume as possible, which limits the athlete to simultaneously train the skills of their sport.

As you may know from reading above, in this program, there are three phases that make up a block.

The first is the Accumulation phase. In this program, the Accumulation phase is broken down into two micro-phases. These phases will work to build our foundation.

The first two weeks of the Accumulation phase will be known as the Adaptation phase, and this can be thought of as a “Pre-Accumulation” phase in which we use general preparation methods to prime the body for the stimuli it’s about to be introduced to.

In these two weeks, you’ll see a focus on volume to increase your overall work capacity. This will prepare you for more intense loads you’ll see in the following phases by allowing you to produce higher quality repetitions.

During weeks 3 through 6, we’ll advance the Accumulation phase by developing basic motor qualities.

In addition, we’ll introduce eccentric strength training as well as absolute strength training with compound lifts.
As far as auxiliaries go, they will be programmed with the intent of further developing the basic motor patterns.

From there, we’ll move into the Transmutation phase, which will build upon the qualities we developed in the accumulation phase, while developing intermediate motor patterns and explosive power.

In addition, we’ll continue to develop absolute strength, as well as work on motor unit recruitment with isometric strength training.

Finally, we’ll move into the Realization phase, where we’ll put everything together and focus our efforts on maximal explosiveness and power training.

In this phase, the development of the specific motor patterns we’ve been working on in the previous phases will culminate to produce the proper sequencing of mechanics that will produce improved quickness, agility, and overall power.

During the strength portion of this phase, we’ll continue to develop maximal strength, while also further developing explosiveness and power, by moving lighter loads at fast velocities.
PRINCIPLES OF THE PROGRAM

As you can see, this system is designed to start out very basic, and get progressively more and more advanced as you move through it. Regardless of how easy or difficult the drills are, they require the highest focus and intent in order for them to elicit the physical adaptations that you desire.

In the following sections, we’re going to dive into the principles of the program. These principles cover everything from how to lift, how to deload, how to warm up, and more.

In order to get the results you are looking for with it is critical we are executing the program consistently and correctly.

This is a simple guide to make sure you are doing just that...
STEP 1: Dynamic Warm Up

As a base of mobility and general warm up I highly suggest following my Dynamic Warm Up located in the Exercise Database, even if you are at a commercial gym.

The Dynamic Warm Up, once understood, should only take 10-12 minutes and will act as a great base to prepare your body for the rest of the workout.

The goal of the dynamic warm up is to prime the body for strenuous training by elevating tissue temperature and elevating heart and respiratory rate. The dynamic warm up will improve the quality of the reps, reduce injury, improve reaction time, lower resistance in the muscle range of motion, and improve oxygen delivery and blood flow.

Point being, approach your warm up each session with intent, focus, and the understanding of the benefits.

STEP 2: Mobilization and Activation

The next phase of the workout is the mobilization and activation through static stretching and dynamic movements.

Muscle tightness limits your performance. It not only prevents you from getting into the proper position to move, but it also creates muscle imbalances.

Muscle Imbalances are the leading cause of injury in athletes. To prevent these we want to lengthen muscles that are commonly tight or muscles that will support the movements you are about to perform.

Each time we stretch make sure to intuitively relax into the stretch and focus on increasing the range of motion throughout the time of stretch for each individual set.

STEP 3: Speed and Power Movements

- WARM UP SETS - At this point you should be fully warm and ready to compete in every rep. This means every rep is of the highest quality and intensity.

- INTENSITY - When performing any form of athletic movement always make sure to progress to a technical max. This means you are maximally performing the drill but not sacrificing any technique. If it is a sprint we want to perform with high intensity, but also make sure technique is sound. If the tempo or speed needs to be reduced to meet the technique than so be it. If it is a jump and we need to increase the height we jump each week, without sacrificing form.

- SETS & REPS - The sets and reps are provided, so make sure to record your bests for that particular day if they can be measured. When performing an athletic movement ensure that each rep and set given is performed maximally.
- REST - The rest for each athletic drill is intuitive. This means there is no prescribed rest period. You choose the amount of rest where you can perform each drill with 100% quality. The muscles should not be fatigued unless I have noted otherwise. The standard rest period for a movement in this section is anywhere from 60 - 120 seconds but can vary depending on your conditioning level and the degree of difficulty of the movement.

- RECORDING - Track your progress from week to week for the drills that can be measured.

STEP 4: Strength Movements

- WARM UP SETS - I usually advise 2-3 warm-up sets when performing the main compound movement for strength or power and then lead into the instructed working sets in the table.

- LOAD - Make sure that you choose a weight that you can not perform more than the number of reps given, but can complete the full amount of reps with. Typically I suggest building up to your technical max lift for the given reps. For instance, if the program calls for 5 sets of 3 reps, the prior 2 sets should be a consistent build up. So, say you ended at a 300lb 3RM, it should look something like this...

Warm Up	- 135 x 5
Warm Up	- 225 x 3
Warm Up	- 250 x 3
Set 1	- 275
Set 2	- 285
Set 3	- 300

- SETS & REPS - The amount of sets and reps is given in each table to show the athlete what they must perform for each movement on each and every day. This means if you are performing a Deadlift for your Strength Movement and it calls for 3 sets of 3 reps you would complete 2-3 warm up sets. Then from there you will progress each of the 3 sets until you reach your heaviest 3 repetitions, while maintaining proper technique.

- TEMPO - The tempo for each particular rep will be displayed with a bracket next to the movement. (Example: [3|1|X]) Where the first number is the Eccentric tempo or portion where you will lower the weight for the given seconds. ([3|1|X] in this case 3 seconds). The next number is the Isometric portion and finally the Concentric is the last. The letter X represents “explode” as in you will produce force as fast as possible in this phase of the lift. So to go with the example of [3|1|X] on say a bench press you would lower the weight to your chest in 3 seconds. Then you would come to a hard pause at the bottom of the motion for 1 second then explode the bar up as fast as you can.

- REST - Sets of reps >5 = 60-90 seconds of rest between sets. Sets of reps <5 = 2-3 minutes rest between sets. The exception to this is when the program calls for a superset.
- **ECCENTRIC TRAINING** - When performing an eccentric lift we will focus on a controlled tempo for the lengthening of
the movement or the “down” phase. The overall volume to receive this stimulus is low so it’s important to execute each set at a
high level. To perform eccentric reps, you’ll execute on your prescribed tempo on the way down, then explode up as quickly as
you can. For these reps, we’ll stay between 60-85% of your one rep max.

- **ISOMETRIC TRAINING** - When performing an isometric
lift, we will focus on a pause for the static portion of the move-
ment, or the “transition” phase. We will mimic the same range
of motion the athlete will utilize in their sport. For instance, if
we are performing a squat we will perform the isometric pause
at a 45 degree angle. This is because when the athlete runs or
jumps they are typically within this range of hip angle. That said,
when you get to the bottom position of your movement, you’ll
hold that position for your prescribed tempo, squeezing the
muscles involved with the movement as hard as you can. Then,
without sinking lower, you’ll explode up out of that position.
Again, we’ll stay between 60-85% of your one rep max for
maximum effectiveness.

- **CONCENTRIC TRAINING** - When performing a concentric lift, we’ll focus on being as explosive as possible during the asc-
cension or “up” phase of the movement. Here, you’ll control your movement on the way down, no prescribed eccentric tempo.
Then you’ll move the bar as quickly as you can as you explode out of the body position. Here, we’re focused on moving the bar
as fast as possible, so we’ll use lighter loads that can be anywhere from 30-55% of your one rep max.

- **RECORDING** - Make sure to write down the weight that you performed the lift with in the table to keep track of progress.
This is paramount as each week you will be building on the previous from last week. Track these in the actual Excel Sheet so you
can analyze your progress.

STEP 5: Auxiliary Movements

- **SETS AND REPS** - Make sure that you are performing each movement with maximal intensity. If the set calls for 10 reps
then you are performing that set with a weight that you can do only between 8 - 12 reps with. If you can do more than 12 reps
with that weight then you need to increase the intensity.

- **REST** - Rest during the auxiliary phase varies, but try to stick closely to 60 - 90 seconds rest between each exercise. If you
switch body parts you can take up to 2 - 3 minute rest.
Reload

Every 3 - 6 weeks you will be assigned a Reload week in your training. During this period we are attempting to recover the muscle tissue and nervous system fatigue. This week typically mimics the same program you are following but with reduced volume and intensity overall.

- **SPEED AND POWER RELOAD** - During these movements in a reload we want to focus more on technique then intensity. I like to cue my guys to have mental reps by pulling back the reins and having them focus on perfect reps for each drill. In addition, volume will typically be reduced.

- **STRENGTH RELOAD** - During this portion we will cut the intensity of the movement to 50% of your estimated 1 rep max to reduce nervous system fatigue and allow it to recover. A race car can’t be driving with the pedal to the floor forever or it will breakdown. Use this time to recover and tune up.

- **AUXILIARY RELOAD** - During the auxiliaries we want to reduce the intensity to an estimated 70% of what you were performing the movements in the prior week. As a simple example, if you were performing a single arm row with a 100 lb dumbbell we simply want to reduce to a 70 lb dumbbell.
This concludes the Built to Ball manual. The goal of this manual is to educate the athlete or coach as to why they are doing what they are doing.

My experience as a coach has been to show the athlete the final product to show the potential possibilities. Take Lego’s as an example. We want to show them the finished product on the front of the box while guiding them step by step through the process. By showing them the bigger picture and the step by step process of getting there I’m of the opinion that this produces not only trust and confidence in their training but better overall effort. Better effort produces better results.

As mentioned above, there are many ways to skin a cat but I wouldn’t put this program together if I didn’t think it would work for athletes across the board.

With that being said if you don’t get the desired results I implore you to reach out to me in order for us to determine the best strategy for you moving forward to get those results.

Train hard, compete every rep, and trust the process.

Chris Barnard
MEDICAL DISCLAIMER

This program is for educational and informative purposes only and is not intended as medical or professional advice. Always consult your doctor before making any changes to your diet or nutrition program. The use of diet and nutrition to control metabolic disorders and disease is a very complicated science, and is not the purpose of this program. The purpose of this program is to help healthy people reach their cosmetic fitness goals by educating them in proper nutrition and exercise guidelines.

No health claims are made for this program. This nutrition and exercise program will not help cure, heal, or correct any illness, metabolic disorder, or medical condition. The author is not a medical doctor, registered dietician, or clinical nutritionist; the author is a fitness and nutrition consultant.

All individuals, especially those who suffer from any disease or are recovering from injury, should consult their physician regarding the advisability or undertaking any of the activities suggested in these programs.

The American College of Sports Medicine (ACSM) recommends that apparently healthy individuals who are male and over 40 or female and over 50 to have both a physical exam and a diagnostic exercise test prior to starting a vigorous exercise program. A diagnostic exercise test and physical examination is also recommended in individuals of any age who exhibit two or more of the major coronary risk factors (smoking, family history of heart disease, elevated blood cholesterol, elevated blood pressure, and diabetes). Any individual with a known history of heart disease or other heart problems should be required to have a medical evaluation including a graded exercise test before engaging in strenuous physical activity.

The author and publisher shall have neither liability nor responsibility to any person or entity with respect to any of the information contained in this manual. The user assumes all risk for any injury, loss or damage caused or alleged to be caused, directly or indirectly by using any information described in this course.

ALL RIGHTS RESERVED: No part of this program may be reproduced or transmitted in any form whatsoever, electronic or mechanical, including photocopying, recording, or by any informational storage or retrieval system, without expressed, written and signed permission from the author (with the exception of brief quotations as used in reviews or discussion groups, with attribution to the author and source).